Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang

School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China

Correspondence e-mail:
zhangxm@dns.sxtu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.052$
$w R$ factor $=0.145$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mu-4,4^{\prime}$-Bipyridine $-\kappa^{2} N: N^{\prime}$-bis[triaqua(pyridine-2,4-dicarboxylato- $\kappa^{2} N, O$)cobalt(II)] dihydrate

The title centrosymmetric dinuclear complex, $\left[\mathrm{Co}_{2}-\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been synthesized hydrothermally. The cobalt(II) ion is coordinated in a slightly distorted octahedral environment by one N atom and one carboxylate O atom in N, O-chelating mode from one 2,4pyridinedicarboxylate ligand, by one N atom from 4,4'bipyridine, and by three water molecules. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into a three-dimensional framework.

Comment

Recently, the author and other groups have been exploiting the chelate and bridging pyridine-2,4-dicarboxylate ligand for coordination polymers and organic-inorganic hybrid compounds because of its flexible and varied coordination modes (Zhang \& Chen, 2003; Zhang, 2005; Noro et al., 2002; Liang et al., 2002; Gerrard \& Wood, 2000). The hydrothermal reaction of a copper salt, pyridine-2,4-dicarboxylate and 4,4'bipyridine generated the porous mixed-valence copper(I,II) coordination polymer catena-[bis[($\mu_{2}-4,4^{\prime}$-bipyridyl) $\left(\mu_{2}\right.$-pyri-dine-2,4-dicarboxylato- $\left.N, O, O^{\prime}\right)$]tricopper(I,II) tetrahydrate], which contains 'metal complex ligands' and is a threedimensional framework constructed from fivefold parallel intertwining of two-dimensional $(6,3)$-nets (Zhang \& Chen, 2003). Substitution of a cobalt salt for the copper salt resulted in the neutral dinuclear title complex, (I).

(I)

Compound (I) (Fig. 1) crystallizes in triclinic space group $P \overline{1}$ about an inversion center, and the asymmetric unit consists of one crystallographically independent cobalt(II) ion, one 2,4pyridinedicarboxylate molecule, one-half of a 4,4'-bipyridyl (bipy) group, three coordinated water molecules and one solvent water molecule. All atoms reside on general positions and the inversion center is located at the mid-point of the bipy ligand. The $\mathrm{Co}^{\mathrm{II}}$ ion is coordinated, in a slightly distorted octahedral environment (see Table 1), by one N atom and one carboyxlate O atom in N, O-chelate mode from one 2,4pyridinedicarboxylate ligand, one N atom from bipy, and three water molecules. The $\mu_{2}-4,4^{\prime}$-bipyridine ligand bridges two $\left[\mathrm{Co}(2,4\right.$-pyridinedicarboxylate $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ units to form the dinuclear molecule.

Received 10 May 2005 Accepted 16 May 2005 Online 17 June 2005
\qquad

Figure 1
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. [Symmetry code: $(A)-x,-y,-z+1$.]

In the crystal structure, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the complexes and water molecules into a three-dimensional network (see Table 2 for hydrogen-bond geometries).

Experimental

A mixture of cobalt acetate tetrahydrate (0.125 g), 2,4-pyridinedicarboxylic acid (0.083 g), 4,4'-bipyridine (0.078 g) and water (7 ml) in a 1:1:1:780 molar ratio was stirred for 20 min in air, then transferred and sealed in a 15 ml Teflon-lined stainless steel container, which was heated to 433 K for 3 d . After cooling to room temperature, red needles of (I) were recovered as a single product in 65% yield. Analysis found: C 38.46, H 3.96, N 7.43\%; calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{Co}_{2} \mathrm{~N}_{4} \mathrm{O}_{16}$: C 38.52, H 4.04, N 7.49%.

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=748.38$
Triclinic, $P \overline{1}$
$a=6.413(1) \AA$
$b=9.763(2) \AA$
$c=12.113(2) \AA$
$\alpha=79.54(3)^{\circ}$
$\beta=79.26(3)^{\circ}$
$\gamma=80.61(3)^{\circ}$
$V=726.1(2) \AA^{\circ}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.711 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 126 \\
& \quad \text { reflections } \\
& \theta=2.6-25^{\circ} \\
& \mu=1.23 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, red } \\
& 0.33 \times 0.12 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX area-dector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
\quad (Blessing, 1995)
$\quad T_{\min }=0.688, T_{\max }=0.898$
4961 measured reflections

3074 independent reflections
2285 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.2^{\circ}$
$h=-8 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 11$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052\)
\(w R\left(F^{2}\right)=0.145\)
\(S=1.12\)
3074 reflections
241 parameters
H atoms treated by a mixture of independent and constrained refinement
```

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Co1-O3W	$2.067(3)$	$\mathrm{Co} 1-\mathrm{O} 2 W$	$2.116(3)$
Co1-O1	$2.075(3)$	$\mathrm{Co} 1-\mathrm{N} 2$	$2.151(3)$
Co1-O1 W	$2.078(3)$	$\mathrm{Co} 1-\mathrm{N} 1$	$2.157(3)$
O3W-Co1-O1	$94.61(14)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 2$	$97.01(14)$
$\mathrm{O} 3 W-\mathrm{Co} 1-\mathrm{O} 1 W$	$85.80(16)$	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{N} 2$	$88.88(14)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	$175.66(12)$	$\mathrm{O} 3 W-\mathrm{Co} 1-\mathrm{N} 1$	$97.16(14)$
$\mathrm{O} 3 W-\mathrm{Co} 1-\mathrm{O} 2 W$	$174.55(15)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$77.55(11)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2 W$	$90.22(13)$	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	$98.11(14)$
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 2 W$	$89.57(15)$	$\mathrm{O} 2 W-\mathrm{Co} 1-\mathrm{N} 1$	$86.34(14)$
$\mathrm{O} 3 W-\mathrm{Co} 1-\mathrm{N} 2$	$88.82(14)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$164.10(12)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$87.33(12)$		

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 4^{\mathrm{i}}$	0.74 (5)	2.07 (6)	2.791 (5)	167 (5)
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 1^{\text {ii }}$	0.81 (6)	1.97 (6)	2.763 (5)	168 (6)
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 2^{\text {iii }}$	0.86 (5)	1.93 (6)	2.761 (5)	163 (5)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O}^{\text {iv }}$	0.78 (6)	2.06 (6)	2.786 (5)	155 (6)
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O}^{\text {v }}$	0.84 (8)	1.93 (8)	2.771 (5)	177 (8)
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 3^{\text {vi }}$	0.88 (7)	1.94 (7)	2.808 (5)	172 (6)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 4 W^{\text {vii }}$	0.89 (7)	1.81 (7)	2.695 (5)	176 (6)
$\mathrm{O} 4 W-\mathrm{H} 4 W B \cdots \mathrm{O} 4^{\text {viii }}$	0.93 (11)	1.87 (11)	2.786 (6)	168 (9)

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x,-y,-z+1$; (iii) $x+1, y, z$; (iv) $-x,-y+1,-z$; (v) $x, y, z+1$; (vi) $x, y-1, z$; (vii) $-x+1,-y+1,-z+1$; (viii) $x+1, y, z+1$.

H atoms bonded to C atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$) and refined in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bonded to O atoms were located in Fourier maps and refined independently with isotropic displacement parameters. The highest peak in the final difference Fourier map was located 1.25 Å from Co1.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin. Gerrard, L. A. \& Wood, P. T. (2000). Chem. Commun. pp. 2107-2108.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liang, Y., Cao, C., Hong, M., Sun, D., Zhao, Y., Weng, J. \& Wang, R. (2002). Inorg. Chem. Commun. 5, 366-368.
Noro, S., Kitagawa, S., Yamashita, M. \& Wada, T. (2002). Chem. Commun. pp. 222-223.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, X.-M. (2005). Inorg. Chim. Acta, 358, 1865-1872.
Zhang, X.-M. \& Chen, X.-M. (2003). Eur. J. Inorg. Chem. 413-417.

